Espuma de poliuretano


Espuma de poliuretano

Su formulación se basa en polioles de bajo número de hidróxilo (OH) combinados con isocianatos de bajo contenido en grupos funcionales (NCO), unido a propelentes especiales y una cantidad exactamente medida de agua. La fórmula está estequiométricamente diseñada para lograr un material (espumado o no) de curado rápido y con una densidad entre 10 y 80 kg/m³.

Las aplicaciones más utilizadas en el segmento de los poliuretanos flexibles son la fabricación de colchones, almohadas y asientos tanto para la industria hogareña (sillas y sillones) como industrial (asientos y butacas para autos, buses, etc.). En este segmento suelen utilizarse espumas de entre 18-50 kg/m3. Otras aplicaciones se dan en la industria del packaging, en la que se usan espumas como protectores anti impacto para embalajes de piezas delicadas. Su principal característica es que son de celdas abiertas y de baja densidad (12-15 kg/m³).

Los poliuretanos rígidos de densidad 30-60 kg/m³, son muy utilizados como aislantes térmicos. Sus principales aplicaciones son la aislación térmica de frigoríficos (heladeras), congeladores (frízeres), cámaras frigoríficas y chapas para galpones y techos industriales (espuma moldeada dentro de una matriz). También se utilizan como aislación térmica proyectada, para galpones industriales ya construidos (por ejemplo para aislar granjas donde se crían pollos, cerdos, etc.).

La capacidad de aislamiento térmico del poliuretano se debe al gas aprisionado en las celdillas cerradas del entramado del polímero.

Una variedad de los poliuretanos rígidos son los poliuretanos PIR, que gracias a su mejor comportamiento frente al fuego son usados en revestimientos de cañerías que conducen fluidos a alta temperatura en zonas extremadamente húmedas . Su principal característica es la naturaleza ureica del polímero.

Una variedad de los poliuretanos rígidos son los poliuretanos spray, que son formulaciones de alta velocidad de reacción, usados en revestimientos sujetos a la fuerza de gravedad, tales como aislamientos de edificios, estanques de almacenamiento, e incluso tubos o cañerías.

Otra variedad dentro los «poliuretanos rígidos» son los empleados para la realización de piezas de imitación madera, con densidades que oscilan entre los 100-250 kg/m³. También existen formulaciones con mayor densidad (hasta los 800 kg/m³) comúnmente denominadas Duromeros para la realización de piezas estructurales tales como carcas de máquinas industriales, accesorios para autocares, etc.

Reactividad

La reactividad se puede observar en una simple inspección visual y, en el caso de las espumas, está dividida en los siguientes tiempos, medidos en segundos:

  • Tiempo de crema: 5-15 s. Formación de monómeros y polímeros.
  • Tiempo de hilo: 30-70 s. Estructuración, formación de redes cristalinas.
  • Tiempo de subida: Finalización de la expansión.
  • Tacto libre: 10-50 s. Formación de piel, finalización de la reacción. La superficie del material deja de ser adhesiva.

El isocianato y el poliol, al mezclarse, ocasionan una serie de reacciones químicas que conducen a enlaces de uretanos, poliuretanos, alofanatos, ureas modificadas, cianatos, prepolímeros, etc. En total unas 17 reacciones químicas simultáneas, en que el paquete de catalizadores hace que se tome una dirección preferente u otra.

Se genera una exotermia que puede elevar la temperatura hasta más de 100 °C, que hace que el propelente en disolución en el poliol se convierta en un gas. La reacción de isocianato con agua genera dióxido de carbono. Por el calor generado, parte del agua se convierte en vapor. Todo esto hace que expanda la mezcla, formándose pequeñas celdas después del gelado o cremado. Aunque las celdas de CO2 son parte del reticulado, se entremezclan con las que contienen fluorocarbonos para efectos de estabilidad dimensional.

Algunos polioles llevan componentes antiflama que hace que sean retardantes de llama. En algunos países es obligatorio el uso de este componente para determinadas aplicaciones, y son clasificados bajo normas de seguridad.

Las celdas se van formando a medida que se alcanza el tiempo de hilo, para finalizar en el tiempo de Tack free (tacto libre).

Los propelentes son fluorocarbonos modificados ecológicamente tales como el R-141 B, el R-245FA, o el ciclopentano, que cumplen el Protocolo de Montreal para la preservación de la capa de ozono atmosférico. Evidentemente también se utiliza agua y, en menor medida, dióxido de carbono. El freón-11 (R-11), así como otros organoclorados, fueron descartados hace años debido a su incidencia en la capa de ozono.

Al terminar la reacción química, la espuma de poliuretano contiene millones de celdas irregulares, que –según sea la formulación usada– son las que al final le dan las características de aislamiento térmico, resiliencia, acústicas, etc. La estabilidad dimensional es un aspecto muy importante en la calidad de la espuma formada: muchas veces ha sucedido que fórmulas de polioles mal balanceadas, exceso de agua, o mezclas poliol/isocianato deficientes, producen una contracción del polímero, pandeándose y perdiendo su forma. La mezcla poliol/isocianato debe ser estequiométricamente balanceada. En general la mezcla está en un 10 % sobre lo estequiométrico para mayor seguridad; una mezcla mayor en poliol y menor en isocianato lleva a espumas blandas e inestables, mientras que un exceso de isocianatos conduce a espumas ureicas (poliuretanos PIR).

La industria del poliuretano mueve millones de dólares/euros en todo el mundo, y los especialistas en el tema son escasos y muy valorados.

El principal mercado para el poliuretano rígido es la industria del aislamiento térmico (refrigeradores, etc.); en segundo lugar, las industrias de los poliuretanos flexibles (colchones, asientos, etc.).

Un porcentaje menor se usa para moldeado de piezas de automóviles, partes de vehículos, elementos de decoración, etc.

Espumas como aislantes térmicos

Una espuma de poliuretano tiene un coeficiente de transferencia térmica de aproximadamente 0,0183 unidades BTU de transferencia de calor.

Comparativa de coeficientes de conductividad térmica de espumas de PU y otros materiales
Material Densidad (kg/m³) Conductividad térmica (W/m·K)
Chapa de Aluminio 2.700 2,03
Hormigón 2.400 1,63
Vidrio plano 2.500 0,81
Ladrillo macizo 1.600 0,81
Tejas (plana) 1.800 0,76
Yeso (placas) 1.000 0,44
Hormigón liviano 1.000 0,36
Nieve compactada 300 0,23
Madera (pino) 700 0,17
Lana de vidrio 11 0,041
Lana de vidrio 15 0,038
Lana de vidrio 35 0,038
Lana de vidrio 50 0,032
Lana de vidrio 70 0,031
Lana de vidrio 100 0,032
Poliuretano rígido 35 0,020
Poliuretano proyectado 30 0,024

Fuente: Norma IRAM 11601. (Argentina)

Debido a la excelente facilidad de su síntesis y su relación de propiedades mecánicas y aislantes, los poliuretanos rígidos se usan en la industria de la refrigeración, aislamiento, mueble, etc.

Espumas flexibles

Los poliuretanos flexibles se emplean, sobre todo, en la fabricación de espumas blandas, de elastómeros y también de pinturas. Sus propiedades mecánicas pueden variar en gran medida por el empleo de diferentes isocianatos o dioles como, por ejemplo, el polietilenglicol. La adición de cantidades variables de agua provoca la generación de mayor o menor cantidad de dióxido de carbono, el cual aumenta el volumen del producto en forma de burbujas, de diferente manera según el caso. A diferencia de las esponjas naturales, se suele tratar de materiales con poro algo más cerrado.

Materiales sólidos

Los poliuretanos rígidos no porosos o de alta densidad (500-1200 kg/m³) son usados para elaborar componentes de automóviles, suelas de zapatos, piezas de yates, partes de monopatines o muebles y decorados mediante técnicas inyección, colada o incluso por RIM (Reaction Injection Molding). En forma de copolímero, los poliuretanos también se producen como fibras para la industrial textil, tales como el elastano o la licra.

Materiales líquidos

Algunos poliuretanos se emplean para confección de pinturas aislantes, recubrimientos ante abrasivos o recubrimientos aislantes del medio, o pegamentos o adhesivos que se comercializan en estado líquido.

Poliuretano industrial

El poliuretano industrial es por lo general la mezcla de dos componentes o sistema bicomponente, el A y el B, en una proporción estequiométrica definida por el químico que diseña la fórmula.

Existen además poliuretanos monocomponentes, formulados así para su facilidad de aplicación, como por ejemplo los habitualmente usados en la industria de la construcción.