Historia del reloj atómico


Historia del reloj atómico

Lord Kelvin sugirió por primera vez en 1879 la idea de utilizar la vibración atómica para medir el tiempo. El método práctico para realizarlo se convirtió en la resonancia magnética, desarrollada en el decenio de 1930 por Isidor Isaac Rabi.​ El primer reloj atómico fue un dispositivo de máser de amoníaco construido en 1949 en la Oficina Nacional de Normas de EE. UU. NBS, ahora NIST). Era menos exacto que los relojes de cuarzo existentes, pero sirvió para demostrar el concepto. El primer reloj atómico exacto fue un estándar de cesio sobre la base de una cierta transición del átomo de 133Cs, construido por Louis Essen en 1955 en el Laboratorio Nacional de Física (Reino Unido). La calibración del reloj atómico estándar de cesio se efectuó mediante la escala cronológica astronómica tiempo de efemérides (TE).

Esto condujo a la más reciente definición de segundo acordada internacionalmente, por el Sistema Internacional de Unidades (SI), basada en tiempo atómico. Se ha verificado que la igualdad del segundo ET con la del segundo SI (reloj atómico) es de una precisión de 1 parte en 1010. El segundo SI hereda así el efecto de las decisiones de los diseñadores originales de la escala cronológica ET: tiempo de efemérides, la determinación de la duración del segundo ET.

Mayo de 2009. El reloj atómico óptico de estroncio JILA (siglas de Joint Institute for Laboratory Astrophysics) es ahora el reloj más exacto del mundo sobre la base de átomos neutros. Un luminoso láser azul en los átomos de estroncio ultrafríos en una trampa óptica que prueba sobre la eficacia de una explosión previa de luz de un láser de color rojo ha impulsado los átomos a un estado excitado. Solamente los átomos que permanecen en el estado de menor energía responden al láser azul y provocan la fluorescencia que se expresa aquí. Fotografía: Sebastián Blatt, JILA, Universidad de Colorado.

Desde el comienzo del desarrollo en el decenio de 1950, los relojes atómicos se han hecho sobre la base hiperfina (microondas) de las transiciones en 1H (hidrógeno 1), 133Cs y 87Rb (rubidio 87). El primer reloj atómico comercial fue el Atomichron fabricado por la National Company. Se vendieron más de 50, entre 1956 y 1960. A esta máquina, voluminosa y cara, posteriormente la substituyeron dispositivos mucho más pequeños, de montaje en rack, como el modelo 5060 de Hewlett-Packard estándar, de frecuencia de cesio, lanzado en 1964 [1].

A finales del decenio de 1990, cuatro factores han contribuido a importantes avances en este tipo de relojes:

  • Enfriamiento láser y atrapado de átomos.
  • Cavidades de alta finura de Fabry-Pérot para líneas láser angostas.
  • Espectroscopia láser de precisión.
  • Un conveniente recuento de frecuencias ópticas utilizando peines ópticos.

En agosto de 2004, científicos del NIST demostraron un reloj atómico de chips. Según los investigadores, el tamaño del reloj sería de la centésima parte de cualquiera otro. También se proclamó que requería solo 75 milivatios (mW), lo que es idóneo para aplicaciones sustentadas en energía a base de pilas. Esta tecnología está disponible comercialmente desde 2011 (SA.45s CSAC Chip Scale Atomic Clock. 2011. 24 de mayo de 2012).

En marzo de 2008, físicos del NIST demostraron un reloj basado en lógica cuántica sobre mercurio y sobre iones individuales de aluminio. Estos dos relojes son las más exactos que se han construido hasta la fecha. No se atrasan, ni se adelantan, a una velocidad que exceda en más de un segundo en mil millones de años.

A pesar de ello, los físicos continúan experimentando nuevas variaciones con másers, de: a) hidrógeno (Townes); b) bombeo óptico de rubidio (Kasler); c) los recientemente propuestos de mercurio, que permitirían alcanzar mayor precisión. También se mejora constantemente la precisión en los de cesio con láseres para enfriar los átomos, y la obtenida en el último reloj del NIST, el NIST-F1, puesto en marcha en 1999, que es del orden de un segundo en veinte millones de años.

En agosto de 2004, científicos del NIST hicieron la primera demostración de un reloj atómico del tamaño de un circuito integrado. Esto representa un reloj cien veces menor que cualquier otro construido hasta la fecha, cuyo consumo es de solo 0,079 vatios.